메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Urtnasan Erdenebayar (Yonsei University) Yeewoong Kim (Yonsei University) Joung-Uk Park (Yonsei University) SooYong Lee (Yonsei University) Kyoung-Joung Lee (Yonsei University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.20 No.3
발행연도
2020.9
수록면
181 - 187 (7page)
DOI
10.5391/IJFIS.2020.20.3.181

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A healthy sleep structure is clinically very important for overall health. The sleep structure can be represented by the percentage of different sleep stages during the total sleep time. In this study, we proposed a method for automatic classification of sleep stages from an electrocardiogram (ECG) signal using a gated-recurrent unit (GRU). The proposed method performed multiclass classification for three-class sleep stages such as awake, light, and deep sleep. A deep structured GRU was used in the proposed method, which is a common recurrent neural network. The proposed deep learning (SleepGRU) model consists of a 5-layer GRU and is optimized by batch-normalization, dropout, and Adam update rules. The ECG signal was recorded during nocturnal polysomnography from 112 subjects, and was normalized and segmented into units of 30-second duration. To train and evaluate the proposed method, the training set consisted of 80,316 segments from 89 subjects, and the test set used 20,079 segments from 23 subjects. We achieved good performances with an overall accuracy of 80.43% and F1-score of 80.07% for the test set. The proposed method can be an alternative and useful tool for sleep monitoring and sleep screening, which have previously been manually evaluated by a sleep technician or sleep expert.

목차

Abstract
1. Introduction
2. Material and Method
3. Experimental Results
4. Discussion
5. Conclusion
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0