메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이창은 (한국전자통신연구원) 성태경 (충남대학교)
저널정보
한국로봇학회(논문지) 로봇학회 논문지 로봇공학회 논문지 제12권 제3호
발행연도
2017.9
수록면
350 - 355 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
UWB (Ultra Wide Band) refers to a system with a bandwidth of over 500 MHz or a bandwidth of 20% of the center frequency. It is robust against channel fading and has a wide signal bandwidth. Using the IR-UWB based ranging system, it is possible to obtain decimeter-level ranging accuracy. Furthermore, IR-UWB system enables acquisition over glass or cement with high resolution. In recent years, IR-UWB-based ranging chipsets have become cheap and popular, and it has become possible to implement positioning systems of several tens of centimeters. The system can be configured as one-way ranging (OWR) positioning system for fast ranging and TWR (two-way ranging) positioning system for cheap and robust ranging. On the other hand, the ranging based positioning system has a limitation on the number of terminals for localization because it takes time to perform a communication procedure to perform ranging. To overcome this problem, code multiplexing and channel multiplexing are performed. However, errors occur in measurement due to interference between channels and code, multipath, and so on. The measurement filtering is used to reduce the measurement error, but more fundamentally, techniques for removing these measurements should be studied. First, the TWR based positioning was analyzed from a stochastic point of view and the effects of outlier measurements were summarized. The positioning algorithm for analytically identifying and removing single outlier is summarized and extended to three dimensions. Through the simulation, we have verified the algorithm to detect and remove single outliers.

목차

Abstract
1. 서론
2. 확률적TWR 해석
3. 해석적 이상측정치 제거 알고리즘
4. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-559-001257090