메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장경석 (Seoul National University) 임형준 (Seoul National University) 황지혜 (LSMtron) 신재윤 (LSMtron) 윤군진 (Seoul National University)
저널정보
한국항공우주학회 한국항공우주학회지 韓國航空宇宙學會誌 第48卷 第10號
발행연도
2020.10
수록면
773 - 782 (10page)
DOI
10.5139/JKSAS.2020.48.10.773

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
심층신경망 기반 하이브리드 유한요소해석을 위한 조인트 모델 방법 구축을 소개한다. 트렉터의 앞차축에서 다양한 체결 조건에 의해 유발되는 복잡한 거동 상태를 가지는 볼트와 베어링의 재료모델을 심층신경망으로 대체했다. 볼트는 6자유도를 갖는 1차원 티모센코 빔 요소를 이용했고, 베어링은 3차원 솔리드 요소를 이용했다. 다양한 하중 조건을 바탕으로 유한요소해석을 한 뒤, 모든 요소에서 응력-변형률 데이터를 추출하고 텐서플로를 이용하여 학습시켰다. 신경망 기반 유한요소해석을 할 때 추출된 데이터를 바탕으로 학습된 심층신경망은 ABAQUS 서브루틴 안에 포함되어 현재 해석 증분의 응력을 예측하고 접선강도행렬을 계산할 수 있게 했다. 학습된 심층신경망 조인트 모델의 일반화 성능은 훈련에 사용되지 않은 새로운 하중 조건에서 해석하여 검증하였다. 최종적으로 이 방법을 이용하여 심층신경망 기반 앞차축 해석을 진행하고 응력장 분포를 검증했다. 또한, 실제 트렉터의 3점 굽힘 실험 결과와 비교하여 심층신경망 기반 해석의 타당성을 검토했다.

목차

ABSTRACT
초록
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-558-001300060