메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이영섭 (Gyeongsang National University) 이성진 (Gyeongsang National University)
저널정보
대한전기학회 전기학회논문지 P 전기학회논문지 제69P권 제4호
발행연도
2020.12
수록면
275 - 283 (9page)
DOI
10.5370/KIEEP.2020.69.4.275

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we use Generative Adversarial Networks (GAN) to address the industrial needs of auto colorization of line arts which takes enormous amount of manual labor. Auto-colorization method used in Image-to-Image conversion based on GAN has received a lot of attention due to its promising results. In this paper, we present a solution to not only colorize the line art but also transform the low resolution out image to match the resolution of the input image through two generators and frequency separation method. A high frequency components are extracted from the line, then two generators are used to colorize the image in low resolution. The high frequency component is merged with low resolution image to produce the high resolution colorized image. The resolution of fi nal output image matches the resolution of original image while preserving the texture of the input image, whereas the other schemes reduce the output image to 512 pixels. We performed visual and qualitative evaluation using FID, PSNR, and SSIM. The FID Score of the proposed method is better than the base model by about 4 (proposed: 47.87 and base model 51.64). PNSR and SSIM of the high-resolution images are also better than the base model. PSNR and SSIM of base model is 13.01 and 0.72 whereas the proposed is 20.77 and 0.86, respectively.

목차

Abstract
1. 서론
2. 관련 연구
3. 제안 기법의 구성
4. 실험과 분석
5. 결론
References

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-560-000074136