메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
노영빈 (고려대학교) 최희정 (고려대학교) 이정호 (고려대학교) 서승완 (고려대학교) 강필성 (고려대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제46권 제6호
발행연도
2020.12
수록면
683 - 693 (11page)
DOI
10.7232/JKIIE.2020.46.6.683

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Real-time estimation of wave condition is essential to improve sailing efficiency. However, existing methodologies are uneconomical due to the expensive radar and high computational complexity. To this end, we propose a neural network model capable of real-time estimation of significant wave height and direction by using raw ocean images collected from operating vessels. In the proposed method, multiple consecutive ocean images are concatenated as a single clip. Then, Convolutional Long Short-Term Memory (ConvLSTM), which combines Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM), was trained on the clips. The final estimation is performed through regression or classification using the extracted spatiotemporal feature map. Based on the datasets collected from two different ships, our proposed method achieved the absolute error of 8cm and a relative error of 5% for significant wave height estimation. Besides, the proposed method yielded an absolute error of 6° for wave direction.

목차

1. 서론
2. 선행 연구
3. 제안 방법론
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (41)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-530-000067006