메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤주원 (충남대학교) 심희정 (한림대학교) 성철재 (충남대학교)
저널정보
한국음성학회 말소리와 음성과학 말소리와 음성과학 제12권 제4호
발행연도
2020.12
수록면
91 - 98 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
근긴장성 발성장애(cepstral peak prominence, MTD) 환자의 모음 발성과 문장읽기 과제를 켑스트럼 기반 변수를 이용하여 분석하였으며 음성장애 환자의 GRBAS청지각적 특성과 음향학적 특성의 상관관계를 살펴보고, 랜덤포레스트 머신러닝 분류 알고리듬을 이용한 MTD 감별 진단 가능성을 논의하였다. 내원 시 MTD로 진단받은 여성 36명과 정상음성을 사용하는 여성 36명이 연구에 참여했으며, 수집한 음성샘플은 ADSV™ 를 사용하여 분석하였다. 연구 결과, 음향학적 측정치 중 MTD의 CSID(cepstral spectral index of dysphonia)는 대조군보다 높았으며, CPP(cepstral peak prominence), CPP_Fo 값이 대조군보다 유의하게 낮았다. 이는 모음 발성과 읽기 과제에서 모두 동일하게 나타났다. MTD 환자의 음질 특성은 전반적인 음성중증도(G)가 가장 두드러졌으며, 조조성(R), 기식성(B), 노력성(S)순으로 음성 특성을 보였다. 이 특성이 높아질수록 CPP가 감소하는 부적 상관을 보이고, CSID는 증가하는 정적 상관이 관찰되었다. 켑스트럴 변수 중 모음과 문장읽기과제 모두에서 집단간 유의한 차이를 보여준 CPP와 CPP_F0를 이용하여 MTD와 대조군의 음성분류를 시도하였다. 머신러닝 알고리듬인 랜덤포레스트로 모델링한 결과 문장읽기 과제에서 모음연장발성보다 조금 더 높은 분류 정확도(83.3%)가 나왔으며, 모음 발성과 문장 읽기 과제 모두에서 CPP변수가 더 중심적 역할을 수행하였음을 알 수 있었다.

목차

Abstract
1. 서론
2. 연구방법
3. 결과
4. 맺음말
References
국문초록
참고문헌

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-700-001448141