메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Suho Son (Pusan National University) Gijun Oh (Pusan National University) Sungyong Ahn (Pusan National University)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.20 No.6
발행연도
2020.12
수록면
491 - 498 (8page)
DOI
10.5573/JSTS.2020.20.6.491

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the cloud computing where multiple isolated tenants share I/O resources, weight-based proportional I/O bandwidth sharing is a critical system requirement. However, existing I/O schedulers are not efficiently support proportional I/O bandwidth sharing for multi-queue storage device such as NVMe SSDs due to scalability problem. Especially, BFQ scheduler, default proportional I/O scheduler in Linux severely decreases the I/O performance of NVMe SSDs because of its serialized request dispatching process. In this paper, we present a low overhead proportional-share I/O scheduler for multi-queue block layer. The proposed I/O scheduler employs scalable request queue architecture and manages I/O bandwidth by distributing I/O tokens to multiple process groups(cgroups) in proportion to I/O weights. Moreover, the total amount of I/O tokens are dynamically adjusted to the fluctuated performance of NVMe SSDs due to internal operations of SSDs such as garbage collection and wear-leveling, so that the I/O performance of NVMe SSD is not wasted. Our I/O scheduler is implemented on Linux kernel 5.2.0 and evaluated with various benchmarks. The evaluation results show that our I/O scheduler improves I/O bandwidth 3.61 times than BFQ scheduler while sharing I/O bandwidth among multiple cgroups in proportion to I/O weights exactly. Also, our scheduler shows scalable performance close to Linux None scheduler even with extremely high degree of multiple threads.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. MOTIVATION
IV. KYBER-FAIRNESS SCHEDULER
V. EXPERIMENTAL RESULTS
VI. CONCLUSIONS
REFERENCES

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-569-001450984