메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박대현 (Inha University) 이성호 (Inha University) 배승환 (Inha University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제10호(통권 제223호)
발행연도
2022.10
수록면
19 - 28 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 실시간 고성능 다중 객체 추적을 수행하기 위해 최적의 TBD (Tracking-by-detection) 메커니즘을 결정할 수 있는 Detector Scheduler를 제안한다. Detector Scheduler는 서로 다른 프레임 간의 특징량 차이를 측정하는 것으로 검출기 실행 여부를 결정하여 전체 추적 속도를 향상한다. 하지만, Detector Scheduler의 학습에 필요한 GT (Ground Truth) 생성이 어렵기 때문에 Detector Scheduler를 추적 결과만을 통해 학습 가능한 자가 학습 방법을 제안한다. 제안된 자가 학습 방법은 프레임 간의 객체 카디널리티와 객체 외형 특징량의 비유사도가 커질 때 검출기를 실행할 수 있도록 의사 레이블을 생성하고 제안된 손실함수를 통해 Detector Scheduler를 학습한다.

목차

Abstract
요약
I. Introduction
II. Related Works
III. Methodology
IV. Experiments
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0