메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤진현 (Seowon University) 이병권 (Seowon University) 김병완 (Seowon University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제1호(통권 제202호)
발행연도
2021.1
수록면
77 - 84 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
오늘날 문화재 복원은, 기존 자료와 전문가에 의존하는 것과 더불어 최신 IT 기술을 적용하여 복원하고 있다. 하지만 새로운 자료가 나와서 기존 복원이 틀리게 되는 경우, 복원하는데 너무 오랜 시간이 걸릴 때도 있다. 그리고 예상과 다른 결과가 나올 가능성도 있다. 이에 우리는 중요 문화재의 복원을 인공지능을 이용하여 빠르게 복원을 해 보고자 한다. 최근에 Generative Adversarial Networks(GANs) 알고리즘에서 DcGAN[2] 알고리즘이 나오면서 이미지 생성, 복원 분야가 지속해서 발전하고 있다. 이에 본 연구에서는 다양한 GAN 알고리즘을 문화재 복원에 GAN 알고리즘을 적용해 보았다. DcGAN과 StyleGAN을 적용하였으며, 유의미한 결과를 얻었다. GAN 알고리즘 중 DCGAN과 Style GAN 알고리즘을 실험한 결과 DCGAN 알고리즘은 학습이 진행되었으며, 낮은 해상도로 탑 이미지가 생성되는 것을 확인했다. 그리고 Style GAN 알고리즘에서도 역시 학습이 진행 되었으며, 탑 이미지가 생성되었다. 결론적으로 GAN 알고리즘을 사용하여 높은 해상도의 탑 이미지를 구할 수 있게 되었다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Conclusions
REFERENCES

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0