메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yuto Seko (Waseda University) Ryotaro Shimizu (Waseda University) Gendo Kumoi (Waseda University) Tomohiro Yoshikai (Japan Weather Association) Masayuki Goto (Waseda University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.20 No.1
발행연도
2021.3
수록면
35 - 47 (13page)
DOI
10.7232/iems.2021.20.1.35

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In retail stores, there is an increasing need for predicting item demand using accumulated purchase history data to cope with the fluctuating consumer demands. These fluctuations in item demand are influenced by external factors and consumer preferences. Among these, store characteristics and weather conditions, which are closely related to consumer behavior, have strong effects on item demand. For this reason, it is very important to quantitatively grasp demand fluctuations of items that are influenced by changes in weather conditions for each store by using an integrated analysis of the purchase history data of many stores and weather conditions. In this research, we focus on the temperature difference, which is the average temperature difference from the previous day, as a weather condition affecting item sales. Because consumer feeling about a temperature is dependent on the temperature difference from the previous day, it is meaningful to construct a prediction model using this information. In this research, we propose a latent class model to express the relationship between weather conditions, store characteristics, and item demand fluctuation. Also, through an analysis experiment using an actual data set, we show the usefulness of the proposed model by extracting items that are influenced by weather conditions.

목차

ABSTRACT
1. INTRODUCTION
2. PREPARATION
3. PROPOSED ANALYSIS METHOD
4. ANALYSIS EXPERIMENT
5. DISCUSSION
6. CONCLUSION AND FUTURE WORKS
REFERENCES

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0