메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mio Hotoda (Waseda University) Gendo Kumoi (Waseda University) Masayuki Goto (Waseda University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.20 No.1
발행연도
2021.3
수록면
48 - 60 (13page)
DOI
10.7232/iems.2021.20.1.48

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Along with recent developments of Internet society, purchasing actions on E-commerce (hereinafter called “EC”) sites have become common for many consumers. On the other hand, it is known that the conversion rate (hereinafter called “CVR”) on EC sites is usually several percent at most. Therefore, many EC sites desire effective measures to improve CVR. In general, a user browses several pages on an EC site before he/she decide to purchase an item and it is considered that users’ intentions are reflected in their page transition tendency on an EC site. If a model analyzing the page transition data can extract users’ purchasing intentions, it enables to utilize the information for making a good promotion measure. Here, it is sometimes better to assume latent classes behind the users’ page transitions to understand their purchase intentions, because there are usually not only several user groups with different preferences but also plural states of purchasing intentions. However, previous models either assume the same latent topic on each page in the same session or assume a latent topic for each page every time. These models cannot handle situations where users’ intentions may change during browsing but not change frequently from page to page. In this study, we propose a purchasing behavior analysis model based on Hidden Topic Markov Models (HTMM). The proposed method can divide users’ browsing sequence into multiple subsequences with the same statistical characteristics according to latent topics estimated from page transitions. Then, the purchase probability of each latent topic can be obtained by using the purchase results obtained from the actual browsing history data together. By the proposed model, the purchase probabilities become possible to estimate the purchase intention of the users in real time and the information is effective for considering marketing measures. In this study, an experiment using real browsing history data is carried out and the effectiveness of the proposed method is demonstrated.

목차

ABSTRACT
1. INTRODUCTION
2. PREPARATION
3. RELATED WORK
4. PROPOSED MODEL
5. ACTUAL DATA ANALYSIS
6. DISCUSSION
7. CONCLUSION AND FUTURE WORK
REFERENCES

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0