메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이강현 (서울대학교) 방경배 (한국생산기술연구원) 김형균 (한국생산기술연구원) 정경환 (한국생산기술연구원) 윤군진 (서울대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.38 No.4
발행연도
2021.4
수록면
295 - 304 (10page)
DOI
10.7736/JKSPE.021.008

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the selective laser melting (SLM) process, a three-dimensional part is manufactured based on the formation of numerous molten tracks. Consequently, the generated melt pool in the scanning process of each track exhibits close relation to the internal defect formation and the quality of the fabricated part. In this study, a numerical model of single-track scanning of the SLM process is presented to analyze the melt pool characteristics for various process conditions. The presented model considers the thermal behavior of the powder material including the phase change and densification during the SLM process. The temperature-dependent energy absorption and the increase in effective energy absorptivity due to the keyhole mode melting are also incorporated in the heat flux model to evaluate the process conditions in the presence of high energy density. Moreover, the single-track specimens were manufactured under various process conditions for validation of the proposed model. The predicted melt pool dimensions, as well as the melting modes (Conduction/Keyhole), demonstrated good agreement with the experimental measurements. Based on the analysis results, the process boundaries (Keyhole/Lack-of-Fusion) for the SLM process of AlSi10Mg are provided and the potential application of the proposed model for exploring the process window is discussed.

목차

1. 서론
2. SLM 공정 수치해석 모델
3. 단일 트랙 SLM 공정 실험
4. SLM 공정 용융풀 해석 및 결과 분석
5. 결론
REFERENCES

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0