메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
공나영 (전주대학교) 고선우 (전주대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제21권 제3호
발행연도
2021.3
수록면
616 - 625 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
심층신경망은 임의의 함수를 근사화하는 방법으로 선형모델로 근사화한 후에 비선형 활성함수를 이용하여 추가적 근사화를 반복하는 근사화 방법이다. 이 과정에서 근사화의 성능 평가 방법은 손실함수를 이용한다. 기존 심층학습방법에서는 선형근사화 과정에서 손실함수를 고려한 근사화를 실행하고 있지만 활성함수를 사용하는 비선형 근사화 단계에서는 손실함수의 감소와 관계가 없는 비선형변환을 사용하고 있다. 본 연구에서는 기존의 활성함수에 활성함수의 크기를 변화시킬 수 있는 크기 파라메터와 활성함수의 위치를 변화시킬 수 있는 위치 파라미터를 도입한 파라메트릭 활성함수를 제안한다. 파라메트릭 활성함수를 도입함으로써 활성함 수를 이용한 비선형 근사화의 성능을 개선시킬 수 있다. 각 은닉층에서 크기와 위치 파라미터들은 역전파 과정에서 파라미터들에 대한 손실함수의 1차 미분계수를 이용한 학습과정을 통해 손실함수 값을 최소화시키는 파라미터를 결정함으로써 심층신경망의 성능을 향상시킬 수 있다. MNIST 분류 문제와 XOR 문제를 통하여 파라메트릭 활성함수가 기존의 활성함수에 비해 우월한 성능을 가짐을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 기존 연구에서 활성함수의 의미
Ⅲ. 활성함수의 일반화와 파라메트릭 활성함수
Ⅳ. 파라메트릭 활성함수의 성능실험
Ⅴ. 결론 및 향후 연구
참고문헌

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0