메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeokmin Gwon (HP) Chungjun Lee (Handong Global University) Rakun Keum (Handong Global University) Heeyoul Choi (Handong Global University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.48 No.4
발행연도
2021.4
수록면
418 - 424 (7page)
DOI
10.5626/JOK.2021.48.4.418

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
NIDS(Network Intrusion Detection System)는 네트워크 경계 보안에 필수적인 도구로써 네트워크 침입을 감지하기 위해 네트워크 트래픽 패킷을 검사한다. 현존하는 많은 연구들은 NIDS를 구축하기 위해 기계 학습 기법을 사용했는데, 이러한 연구들은 다양한 인공지능 알고리즘의 효과를 입증했지만, 네트워크 트래픽 데이터의 시계열 정보를 활용하는 경우는 드물었다. 신경망 기반 모델을 이용한 연구에는 네트워크 트래픽 데이터의 범주형 정보를 보다 더 효과적으로 활용할 수 있는 가능성이 남아있다. 본 논문에서는 LSTM(Long Short-Term Memory) 네트워크를 이용한 순차정보와 임베딩 기법을 이용한 범주형 정보에 근거한 네트워크 침입 탐지 모델을 제안한다. 검증을 위해 종합적인 네트워크 트래픽 데이터 집합인 UNSW-NB15를 이용하여 비교 실험을 수행하였고, 실험 결과는 제안된 방법이 99.72%의 이항 분류 정확도로 기존의 방식들 보다 높은 성능을 보이는 것을 확인하였다.

목차

요약
Abstract
1. Introduction
2. Background
3. Intrusion Detection Based on LSTM
4. Experiments
5. Conclusion
References

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0