메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Chun-myoung Noh (Gyeongsang National University) Su-bong Lee (ADIA Lab) Jae-chul Lee (Gyeongsang National University)
저널정보
한국마린엔지니어링학회 Journal of Advanced Marine Engineering and Technology (JAMET) 한국마린엔지니어링학회지 제45권 제3호
발행연도
2021.6
수록면
122 - 139 (18page)
DOI
10.5916/jamet.2021.45.3.122

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Face recognition (FR) technology, which combines computer vision and artificial intelligence, has recently attracted significant attention as a means of identification. Among biometric technologies, FR technology is used in various fields because it does not require physical contact and is hygienic and convenient. Generally, FR processes use imaging equipment to extract facial feature data representing human faces. One can recognize faces by matching the extracted data to facial feature data stored in a database. In this study, we compared the performances of existing deep-learning-based face detection algorithms (i.e., dlib and the single-shot multibox detector Mobilnet V2) and FR algorithms (i.e., visual geometry groups and ResNet), and developed new FR algorithms, which are crucial for worker access control systems in hazardous regions. To analyze field applicability, we attempted to implement FR algorithms with high prediction accuracy in various scenarios (e.g., subjects wearing helmets, protective glasses, or both). We applied regularization to improve the performance of the implemented algorithms. Additionally, related data were collected and analyzed to recognize the number of people wearing masks. The results of recognizing the number of people wearing masks were obtained. These results will support future research on safety issues in the manufacturing industry and the use of face and image recognition techniques.

목차

Abstract
1. Introduction
2. FR Algorithm
3. Deep-learning-based FR Algorithm (DeepFace)
4. Conclusion
References

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-559-001880637