메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정승민 (Soonchunhyang University) 김영 (Soonchunhyang University) 조은혜 (Soonchunhyang University) 민세동 (Soonchunhyang University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제70권 제8호
발행연도
2021.8
수록면
1,208 - 1,214 (7page)
DOI
10.5370/KIEE.2021.70.8.1208

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this work, we developed a PPG-based blood pressure estimation hybrid deep learning model built into wearable devices and used by hypertension patients to monitor blood pressure in real-time in their daily lives. The model is a deep-learning model that combines data preprocessing, Autoencoder deep learning model for feature extraction, and RAN regression model developed by this research team. We conducted experiments to compare the blood pressure prediction performance of the proposed model with other deep learning models and find out how the objective blood pressure prediction performance is. We conducted experiments on an open dataset with the vital signs of 32 subjects. After models trained on 24 subjects’ data and are tested on eight other people’s data, we could see that using deep-learning regression models combined with an Autoencoder (hybrid deep-learning) performs better than using a deep learning model alone, and RAN accurately predicts blood pressure than the comparable deep-learning models. The study found that the average error for actual and predicted blood pressure in the proposed hybrid deep-learning models was 4.67 mmHg, and the standard deviation of error was 6.37 mmHg. It satisfies the accuracy criteria presented by the Korean National Institute of Food and Drug Safety Evaluation.

목차

Abstract
1. 서론
2. 하이브리드 딥러닝 모델
3. 실험 및 결과
4. 고찰
5. 결론
References

참고문헌 (5)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-560-001935307