메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
백유진 (한국과학기술원) 이지현 (한국과학기술원) 김남희 (김남희연구소) 이헌주 (켐아이넷) 주재걸 (한국과학기술원)
저널정보
한국식품과학회 식품과학과 산업 식품과학과 산업 제54권 제3호
발행연도
2021.9
수록면
160 - 170 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A recent advance in communication technologies accelerates the spread of food safety issues once presented by the news media. To respond to those safety issues and take steps in a timely manner, automatically detecting related information from the news data matters.
This work presents an AI-based system that detects risk information within a food-related news article. Experts in food safety areas participated in labeling risk information from the food-related news articles; we acquired 43,527 articles in which food names and risk information are marked as labels. Based on the news document, our system automatically detects food names and risk information by analyzing similarities between words within a text by leveraging learned word embedding vectors. Our AI-based system shows higher detection accuracy scores over a non-AI rule-based system: achieving an absolute gain of +32.94% in F1 for the food name category and +41.53% for the risk information category.

목차

Abstract
서론
본론
결론
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0