메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hideki Fujinami (Waseda University) Gendo Kumoi (Waseda University) Masayuki Goto (Waseda University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.20 No.3
발행연도
2021.9
수록면
384 - 397 (14page)
DOI
10.7232/iems.2021.20.3.384

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Data augmentation methods are used as a technique to improve generalization by increasing the number of training data in image classification. However, most of these methods are not a data driven algorithm, the degree of improvement of generalization ability by performing these data augmentation methods differs between the domains of image data for training. Generative models are researched to use for augmenting data recently. In particular, Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) that can generate clean image get attention as an excellent innovation in machine learning. As GANs extension method, there is a method called CGANs (Mirza and Osindero, 2014) that can be used for data augmentation. When enough training data for each class are not prepared for classification model, the same is true for training CGANs. In such case, CGAN generates noisy images. This makes a classification model to underfit to the original training data. Moreover, when a CGAN approximates the training data distribution, the CGAN generates new training data in the same region where training data densely exist. In such case, augmented data can’t reduce overfitting on the original training data. Therefore, our research contributes to augment data which meets these two requirements. In this study, we propose a method to generate data by the class specific GAN with small training data and selectively add generated data to the training data set that improves classification accuracy by using the entropy of the classification model. The feature of the proposed method is that it focuses on the positional relationship between data and the classification hyperplane in deep learning. In the proposed method, the entropy of the classification model is used to measure the positional relationship between the classification boundary and the data. As a result, the generalization performance is improved by adding the data around the classification boundary as new training data.

목차

ABSTRACT
1. INTRODUCTION
2. RELATED WORK
3. PRELIMINARIES
4. PROPOSAL
5. EXPERIMENT
6. CONCLUSION AND FUTURE WORKS
REFERENCES

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0