메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문초이 (Soonchunhyang University) 백유상 (Korea University College of Medicine) 최민형 (University of Colorado Denver) 이언석 (Soonchunhyang University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제71권 제12호
발행연도
2022.12
수록면
1,841 - 1,847 (7page)
DOI
10.5370/KIEE.2022.71.12.1841

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Psoriasis is a chronic recurrent disease formed by lesions such as erythema and scale. To evaluate the severity of psoriasis, the psoriasis area and severity index (PASI) score have been used in clinical trials and studies. This clinical indicator is subjective, so to overcome these shortcoming, various automatic psoriasis analysis methods based on deep learning have been studied. However, the limited number of data and psoriasis characteristic such as ambiguity of severity deteriorate model performance. One of the simple and powerful methods to overcome these problem is data augmentation. Data augmentation should be used according to data characteristics. Therefore, we analyzed and compared the classification results applied with five data augmentation methods, Geometric transformation, CutMix, Visual Corruptions, AutoAugment, RandAugment, and explored data augmentation method suitable for psoriasis severity classification. We used the EfficientNet B2 for psoriasis severity classification. As a result, when RandAugment or the combination of Geometric transform and Visual Corruptions were used, it showed the best classification performance with an accuracy of 87.5%. In addition, we confirmed the effect of data augmentation for improving model performance and the difference in performance according to single or multiple applications of the data augmentation methods. Through these results, our study can be applied to various studies as a data augmentation method suitable for psoriasis disease image.

목차

Abstract
1. Introduction
2. Method
3. Results
4. Discussion
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0