소비자의 욕구와 관심에 맞추어 개인화된 제품을 추천하는 추천 시스템은 비즈니스에 필수적인 기술로서의 그 중요성이 증가하고 있다. 추천 시스템의 대표적인 모형 중 협업 필터링은 우수한 성능으로 다양한 분야에서 활용되고 있다. 그러나 협업필터링은 사용자-아이템의 선호도 정보가 충분하지 않을 경우 성능이 저하되는 희소성의 문제가 있다. 또한 실제 평점 데이터의 경우 대부분 높은 점수에 데이터가 편향되어 있어 심한 불균형을 갖는다. 불균형 데이터에 협업 필터링을 적용할 경우 편향된 클래스에 과도하게 학습되어 추천 성능이 저하된다. 이러한 문제를 해결하기 위해 많은 선행연구들이 진행되어 왔지만 추가적인 외부 데이터 또는 기존의 전통적인 오버샘플링 기법에 의존한 추천을 시도하였기에 유용성이 떨어지고 추천 성능 측면에서 한계점이 있었다. 본 연구에서는 CGAN을 기반으로 협업 필터링 구현 시 발생하는 희소성 문제를 해결함과 동시에 실제 데이터에서 발생하는 데이터 불균형을 완화하여 추천의 성능을 높이는 것을 목표로 한다. CGAN을 이용하여 비어있는 사용자-아이템 매트릭스에 실제와 흡사한 가상의 데이터를 생성하여, 희소성을 가지고 있는 기존의 매트릭스로만 학습한 것과 비교했을 때 높은 정확도가 예상된다. 이 과정에서 Condition vector y를 이용하여 소수 클래스에 대한 분포를 파악하고 그 특징을 반영하여 데이터를 생성하였다. 이후 협업 필터링을 적용하고, 하이퍼파라미터 튜닝을 통해 추천 시스템의 성능을 최대화하는데 기여하였다. 비교 대상으로는 전통적인 오버샘플링 기법인 SMOTE, BorderlineSMOTE, SVM-SMOTE, ADASYN와 GAN을 사용하였다. 결과적으로 데이터 희소성을 가지고 있는 기존의 실제 데이터뿐만 아니라 기존 오버샘플링 기법들보다 제안 모형의 추천 성능이 우수함을 확인하였으며, RMSE, MAE 평가 척도에서 가장 높은 예측 정확도를 나타낸다는 사실을 증명하였다.
With the development of information technology, the amount of available information increases daily. However, having access to so much information makes it difficult for users to easily find the information they seek. Users want a visualized system that reduces information retrieval and learning time, saving them from personally reading and judging all available information. As a result, recommendation systems are an increasingly important technologies that are essential to the business. Collaborative filtering is used in various fields with excellent performance because recommendations are made based on similar user interests and preferences. However, limitations do exist. Sparsity occurs when user-item preference information is insufficient, and is the main limitation of collaborative filtering. The evaluation value of the user item matrix may be distorted by the data depending on the popularity of the product, or there may be new users who have not yet evaluated the value. The lack of historical data to identify consumer preferences is referred to as data sparsity, and various methods have been studied to address these problems. However, most attempts to solve the sparsity problem are not optimal because they can only be applied when additional data such as users" personal information, social networks, or characteristics of items are included. Another problem is that real-world score data are mostly biased to high scores, resulting in severe imbalances. One cause of this imbalance distribution is the purchasing bias, in which only users with high product ratings purchase products, so those with low ratings are less likely to purchase products and thus do not leave negative product reviews. Due to these characteristics, unlike most users" actual preferences, reviews by users who purchase products are more likely to be positive. Therefore, the actual rating data is over-learned in many classes with high incidence due to its biased characteristics, distorting the market. Applying collaborative filtering to these imbalanced data leads to poor recommendation performance due to excessive learning of biased classes. Traditional oversampling techniques to address this problem are likely to cause overfitting because they repeat the same data, which acts as noise in learning, reducing recommendation performance. In addition, pre-processing methods for most existing data imbalance problems are designed and used for binary classes. Binary class imbalance techniques are difficult to apply to multi-class problems because they cannot model multi-class problems, such as objects at cross-class boundaries or objects overlapping multiple classes. To solve this problem, research has been conducted to convert and apply multi-class problems to binary class problems. However, simplification of multi-class problems can cause potential classification errors when combined with the results of classifiers learned from other sub-problems, resulting in loss of important information about relationships beyond the selected items. Therefore, it is necessary to develop more effective methods to address multi-class imbalance problems. We propose a collaborative filtering model using CGAN to generate realistic virtual data to populate the empty user-item matrix. Conditional vector y identify distributions for minority classes and generate data reflecting their characteristics. Collaborative filtering then maximizes the performance of the recommendation system via hyperparameter tuning. This process should improve the accuracy of the model by addressing the sparsity problem of collaborative filtering implementations while mitigating data imbalances arising from real data. Our model has superior recommendation performance over existing oversampling techniques and existing real-world data with data sparsity. SMOTE, Borderline SMOTE, SVM-SMOTE, ADASYN, and GAN were used as comparative models and we demonstrate the highest prediction accuracy on the RMSE and MAE evaluation scales. Through this study, oversampling based on deep learning will be able to further refine the performance of recommendation systems using actual data and be used to build business recommendation systems.