메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조희련 (중앙대학교) 이유미 (중앙대학교 인문콘텐츠연구소) 임현열 (중앙대학교) 차준우 (중앙대학교 국어국문학과) 이찬규 (중앙대학교)
저널정보
국제한국언어문화학회 한국언어문화학 한국언어문화학 제18권 제1호
발행연도
2021.1
수록면
217 - 241 (25page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
이 연구에서는 '한국어 딥러닝 모델'이 '한국어 학습자의 쓰기 자료에 대한 한국어 교사의 평가 점수'를 어느 정도 유사하게 예측할 수 있는지 살펴보았다. 구체적으로 이 연구에서는 304편의 한국어 쓰기 자료와 각각에 대한 평가 점수를 KoBERT와 KoGPT2로 학습시킨 후 그것이 인간 채점자(한국어 교사)의 평가 점수를 어느 정도 유사하게 예측하는지 실험하였다. 학습 데이터는 주제에 따라 '직업'과 '행복'으로 구분하였고, 점수에 따라 4종 레이블을 부착하였다. 7겹 교차 검증을 통한 실험 결과, KoBERT에서는 '직업' 데이터에서 48.8%, '행복' 데이터에서 65.2%의 분류 정확도를 나타냈다. KoGPT2에서는 같은 데이터에 대해 각각 50.6%와 58.9%의 분류 정확도를 나타냈다. 더불어, 모든 주제를 통합한 데이터에서는 KoBERT와 KoGPT2에 대해 각각 54.5%와 46.5%의 분류 정확도를 확인할 수 있었다. 이 연구를 통해 한국어 쓰기 자료에 대한 자동 채점 시스템의 가능성을 확인할 수 있었다. 향후 GPT-3의 한국어 모델이 개발되는 등의 기술 발전이 이루어진다면, 이 연구에서 시도한 한국어 자동 채점 시스템도 충분히 가능할 것으로 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0