메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장종환 (아주대학교 의료정보학과) 김태영 (아주대학교) 윤덕용 (아주대학교)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제27권 제1호
발행연도
2021.1
수록면
19 - 28 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Many deep learning-based predictive models evaluate the waveforms of electrocardiograms (ECGs). Becausedeep learning-based models are data-driven, large and labeled biosignal datasets are required. Most individual researchersfind it difficult to collect adequate training data. We suggest that transfer learning can be used to solve this problem and increasethe effectiveness of biosignal analysis. Methods: We applied the weights of a pretrained model to another model thatperformed a different task (i.e., transfer learning). We used 2,648,100 unlabeled 8.2-second-long samples of ECG II data topretrain a convolutional autoencoder (CAE) and employed the CAE to classify 12 ECG rhythms within a dataset, which had10,646 10-second-long 12-lead ECGs with 11 rhythm labels. We split the datasets into training and test datasets in an 8:2 ratio. To confirm that transfer learning was effective, we evaluated the performance of the classifier after the proposed transferlearning, random initialization, and two-dimensional transfer learning as the size of the training dataset was reduced. Allexperiments were repeated 10 times using a bootstrapping method. The CAE performance was evaluated by calculating themean squared errors (MSEs) and that of the ECG rhythm classifier by deriving F1-scores. Results: The MSE of the CAE was626.583. The mean F1-scores of the classifiers after bootstrapping of 100%, 50%, and 25% of the training dataset were 0.857,0.843, and 0.835, respectively, when the proposed transfer learning was applied and 0.843, 0.831, and 0.543, respectively, afterrandom initialization was applied. Conclusions: Transfer learning effectively overcomes the data shortages that can compromiseECG domain analysis by deep learning.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0