메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yanyan Zhou (Tongling University)
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제17권 제2호
발행연도
2021.1
수록면
411 - 425 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compressiondictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neuralnetwork is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neuralnetwork is constructed. The contribution of different networks to the recognition results is adjusted by theadaptive fusion method that adjusts the network according to the recognition accuracy of a single network. Theproportion of output in the network output of the entire multiscale network. Then, the compressed dictionarylearning and the data dimension reduction are carried out using the effective block structure method combinedwith very sparse random projection matrix, which solves the computational complexity caused by highdimensionalfeatures and shortens the dictionary learning time. Finally, the sparse representation classificationmethod is used to realize vehicle type recognition. The experimental results show that the detection effect ofthe proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typicalapplication scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0