메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이달근 (국립재난안전연구원) 이미희 (국립재난안전연구원) 김보은 (국립재난안전연구원) 유정흠 (국립재난안전연구원) 오영주 (국립재난안전연구원) 박진이 (국립재난안전연구원)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제36권 제5호
발행연도
2020.1
수록면
1,179 - 1,194 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 지상기상센서가 설치되지 않은 미 관측지점의 기온정보를 추정하기 위하여 K-최근접 이웃, 랜덤 포레스트, 신경망 알고리즘을 대상으로 위성영상을 이용하여 기온자료를 산출하고 그 정확성을 평가· 분석하고자 하였다. 위성영상자료는 2019년에 취득된 Landsat-8과 MODIS Aqua/Terra을 이용하였으며, 기상자료는 기상청과 산림청의 AWS/ASOS 자료를 이용하였다. 또한 추정 정확도를 향상시키기 위하여 수치표면 모델, 일사량, 경사방향, 경사도를 생성하여 이용하였다. 머신러닝 알고리즘 정확도 비교는 10-fold 교차검증을통하여 R2(결정계수) 및 RMSE(평균제곱근오차)의 통계량을 계산하여 대상지역별 추정결과를 비교하였다. 그결과 신경망 알고리즘이 R2=0.805, RMSE=0.508로 세 알고리즘 중 가장 안정적인 결과를 나타내었다. 신경망알고리즘을 구축된 위성영상 데이터셋에 적용하여 2019년 6월부터 9월까지의 평균기온 지도를 생성할 수 있었으며 세밀한 기온 정보를 관측할 수 있음을 확인하였다. 연구 성과는 폭염 대응 정책, 열섬완화 연구 등 국가재난안전 관리에 활용 될 수 있을 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0