메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최철웅 (전남대학교) 김경백 (전남대학교)
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제9권 제4호
발행연도
2020.1
수록면
126 - 133 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
병원에서는 폐암 환자의 최종병기를 기준으로 치료방침 및 예후를 결정하고 있다. 폐암 환자의 최종병기는 미국 암 연합회(AJCC)에서 제공하는 TNM 분류방법을 바탕으로 7단계로 나누어 진단된다. 이런 접근 방법은 환자의 치료, 예후 및 생존일 예측 등 다양한 분야에서 사용하기에 한계가 있다. 이 논문에서는 데이터 과학적 접근을 통해 T, N, M병기를 사용하여 생존일수별 환자집단을 나눌 수 있는지 알아보기 위해 비지도 학습 중 하나인 군집분석(Clustering)을 진행한 후 군집분석의 결과를 Cox비례위험모형을 사용하여 비교 하였다. 환자들의 최종병기를 사용하지 않고, T, N, M병기 정보만 사용하였을 때 생존시간 예측정확도가 더 높은 것을 확인하였다. 특히, AJCC의 최종병기 7단계와 같이 군집의 개수를 7로 설정했을 때보다 군집의 수를 축소하거나 확장했을 때 T, N, M 병기 군집분석을 통한 생존시간 예측정확도가 향상하는 것을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0