메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Tinoco Hector A. (Universidad Autónoma de Manizales) Cardona Carlos I. (Universidad Autónoma de Manizales) Marín-Berrio Maribel L. F. (Universidad Autónoma de Manizales) García-Grisales Juliana (Universidad Autónoma de Manizales) Gomez Juan P. (Universidad Autónoma de Manizales) Roldan Samuel I. (Centro de Innovación Roldan) Peña Fabio M. (Universidad Autónoma de Manizales) Brinek Adam (Central European Institute of Technology - Brno University of Technology) Kalasová Dominika (Central European Institute of Technology - Brno University of Technology) Kaiser Jozef (Central European Institute of Technology - Brno University of Technology) Zikmund Tomas (Central European Institute of Technology - Brno University of Technology)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.10 No.4
발행연도
2020.1
수록면
603 - 617 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Bone presents different systemic functionalities as calcium phosphate reservoir, organ protection, among others. For that reason, the bone health conditions are essential to keep in equilibrium the metabolism of several body systems. Different technologies exist to diagnose bone conditions with invasive methods based on ionizing radiation. Therefore, there is a challenge to develop new ways to evaluate bone alterations in a noninvasive form. This study shows the assessment of a piezo-actuated device acting on a human tooth for the bio-monitoring of bone alterations. The bone diagnosis is performed by applying the electromechanical impedance technique (EMI), commonly used in structural health monitoring. For the experimental tests, five bone samples were prepared, and one was chosen as the monitoring. All samples were put in a decalcifying substance (TBD1 acid–base) at different times to emulate localized bone mineral alterations. Bone reductions were computed by using X-ray micro-computed tomography analyzing the morphometry. Electrical resistance measurements (piezo-device) were taken for the monitoring specimen meanwhile it was partially decalcified during 8520 seconds. In the frequency spectrum, several observation windows showed that the bone alterations gradually changed the electrical resistance signals which were quantified statistically. Results evidenced that the bone density changes are correlated with the electrical resistance measurements; these changes presented an exponential behavior as much as in the calculated index, and bone mineral reduction. The results demonstrated that bone alterations exhibit linear dependence with the computed statistical indexes. This result confirms that it is possible to observe the bone changes from the teeth as a future application.

목차

등록된 정보가 없습니다.

참고문헌 (50)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0