메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최홍규 (동아대학교)
저널정보
한국유전학회 Genes & Genomics Genes & Genomics Vol.41 No.2
발행연도
2019.1
수록면
133 - 146 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recent next generation sequencing-driven mass production of genomic data and multi-omics-integrated approaches have significantly contributed to broadening and deepening our knowledge on the molecular system of living organisms. Accordingly, translational genomics (TG) approach can play a pivotal role in creating an informational bridge between model systems and relatively less studied plants. This review focuses mainly on addressing recent advancement in omics-related technologies, a diverse array of bioinformatic resources and potential applications of TG for the crop breeding. To accomplish above objectives, information on omics data production, various DBs and high throughput technologies was collected, integrated, and used to analyze current status and future perspectives towards omics-assisted crop breeding. Various omics data and resources have been organized and integrated into the databases and/or bioinformatic infrastructures, and thereby serve as the ome’s information center for cross-genome translation of biological data. Although the size of accumulated omics data and availability of reference genomes are different among plant families, translational approaches have been actively progressing to access particular biological characteristics. When multi-layered omics data are integrated in a synthetic manner, it will allow providing a stereoscopic view of dynamic molecular behavior and interacting networks of genes occurring in plants. Consequently, TG approach will lead us to broader and deeper insights into target traits for the plant breeding. Furthermore, such systems approach will renovate conventional breeding programs and accelerate precision crop breeding in the future.

목차

등록된 정보가 없습니다.

참고문헌 (81)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0