메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Rugang Yu (Huaibei Normal University) Xueling Du (Huaibei Normal University) Jing Li (Huaibei Normal University) Lan Liu (Huaibei Normal University) Chaomeng Hu (Huaibei Normal University) Xiaoling Yan (Huaibei Normal University) Yuqing Xia (Huaibei Normal University) Huijuan Xu (Huaibei Normal University)
저널정보
한국유전학회 Genes & Genomics Genes & Genomics Vol.42 No.4
발행연도
2020.1
수록면
413 - 424 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background Taproot skin color is a major trait for assessing the commercial and nutritional quality of radish, and red-skinned radish is confirmed to improve consumer’s interest and health. However, little is known about the molecular mechanisms responsible for controlling the formation of red-skinned radish. Objective This study aimed to identify the differentially expressed anthocyanin biosynthetic genes between red- and whiteskinned radishes and understand the molecular regulatory mechanism underlying red-skinned radish formation. Methods Based on the published complete genome sequence of radish, the digital gene expression profiles of Yangzhouyuanbai (YB, white-skinned) and Sading (SD, red-skinned) were analyzed using Illumina sequencing. Results A total of 3666 DEGs were identified in SD compared with YB. Interestingly, 46 genes encoded enzymes related to anthocyanin biosynthesis and 241 genes encoded transcription factors were identified. KEGG pathway analysis showed that the formation of red-skinned radish was mainly controlled by pelargonidin-derived anthocyanin biosynthetic pathway genes. This process included the upregulation of PAL, C4H, 4CL, CHS, CHI, F3H, DFR, LDOX, and UGT enzymes in SD. CHS genes were specifically expressed in SD, and it might be the key point for red pigment accumulation in red-skinned radish. Furthermore, MYB1/2/75, bHLH (TT8), and WD 40 showed higher expression in SD than in YB. Meanwhile, the corresponding low-abundance anthocyanin biosynthesis enzymes and upregulation of MYB4 might be the factors influencing the formation of white-skinned radish. Conclusion These findings provide new insights into the molecular mechanisms and regulatory network of anthocyanin biosynthesis in red-skinned radish.

목차

등록된 정보가 없습니다.

참고문헌 (60)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0