메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Rahul Vasudeo Ramekar (Kangwon National University) Kyu Jin Sa (Kangwon National University) Kyong‑Cheul Park (Kangwon National University) Jong Yeol Park (Gangwon Agricultural Research and Extension Services) Ki Jin Park (Gangwon Agricultural Research and Extension Services) Ju Kyong Lee (Kangwon National University)
저널정보
한국유전학회 Genes & Genomics Genes & Genomics Vol.42 No.6
발행연도
2020.1
수록면
631 - 638 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background As waxy maize is considered a key economic crop in Korea, an understanding of its genetic variation and differentiation is fundamental for the selective plant breeding. The maize genome is primarily composed of transposable elements, for which large and stable insertions generate variations that reflect selection during evolution. Objectives This study was to elucidate the genetic diversity based on the contribution of TEs and to investigate the effect of Mu transposition on the genetic divergence of waxy and common maize. We also performed an association analysis on these inbred lines to determine the Mu insertions associated with agronomic traits. Methods In this study, we utilized a Mutator-based transposon display method to study the genetic diversity and population structure of 40 waxy and 40 common inbred lines of maize in the Gangwon Agricultural Research and Extension Services collection at the Maize Research Institute. Results We detected polymorphisms in 86.33% of 278 Mutator (Mu) anchored loci, reflecting the activity of the Mu element and its contribution to genetic variation. Common maize showed a substantial amount of genetic diversity, which was greater than that observed in waxy maize. Principal-coordinate and neighbor-joining cluster analyzes consistently supported the presence of two genetically distinct groups. However, the distribution of genetic variation within the populations was much higher than the genetic differentiation among the populations. To explore the contribution of the Mu element to phenotypic variation, we analyzed the associations with ten important agronomical traits. On the basis of the combined results from two models (QGLM and Q + KLM), we found significant associations between seven Mu loci and four different traits. Conclusions These results will assist waxy maize breeders in choosing parental lines and be useful for marker-assisted selection.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0