메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Saeed H. Moghtaderi (Islamic Azad University) S. Ali Faghidian (Islamic Azad University) Hossein M. Shodja (Sharif University of Technology)
저널정보
국제구조공학회 Steel and Composite Structures, An International Journal Steel and Composite Structures, An International Journal Vol.29 No.4
발행연도
2018.1
수록면
483 - 491 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Timoshenko beam model is widely exploited in the literature to examine the mechanical behavior of stubby beam-like components. Timoshenko beam theory is well-known to require the shear correction factor in order to recognize the non-uniform shear distribution at a section. While a variety of shear correction factors are appeared in the literature so far, there is still no consensus on the most appropriate form of the shear correction factor. The Saint-Venant's flexure problem is first revisited in the frame work of the classical theory of elasticity and a highly accurate approximate closed-form solution is presented employing the extended Kantorovich method. The resulted approximate solution for the elasticity field is then employed to introduce two shear correction factors consistent with the Cowper's and energy approaches. The mathematical form of the proposed shear correction factors are then simplified and compared with the results available in the literature over an extended range of Poisson's and aspect ratios. The proposed shear correction factors do not exhibit implausible issue of negative values and do not result in numerical instabilities too. Based on the comprehensive discussion on the shear correction factors, a piecewise definition of shear correction factor is introduced for rectangular cross-sections having excellent agreement with the numerical results in the literature for both shallow and deep cross-sections.

목차

등록된 정보가 없습니다.

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0