메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hadi Fattahi (Arak University of Technology Iran)
저널정보
한국지질과학협의회 Geosciences Journal Geosciences Journal Vol.20 No.5
발행연도
2016.1
수록면
681 - 690 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Deformability of rock masses influencing their behavior is an important geomechanical property for the rock structures design. Due to the problems in determining the deformability of jointed rock masses at the laboratory-scale, various in situ test methods such as plate loading tests, dilatometer etc. have been developed. Although these methods are currently the best techniques, they are expensive and time consuming, and present operational problems. Furthermore, the influence of the test volume on modulus of deformation depending on the technique used is also important. For these reasons, in this paper, the adaptive network-based fuzzy inference system (ANFIS) was used to build a prediction model for the indirect estimation of deformation modulus of a rock mass. Three ANFIS models were implemented by grid partitioning (GP), subtractive clustering method (SCM) and fuzzy c-means clustering method (FCM). The estimation abilities offered using three ANFIS models were presented by using field data of achieved from road and railway construction sites in Korea. In these models, rock mass rating (RMR), depth, uniaxial compressive strength of intact rock (UCS) and elastic modulus of intact rock (Ei) were utilized as the input parameters, while the deformation modulus of a rock mass was the output parameter. Various statistical performance indexes were utilized to compare the performance of those estimation models. The results achieved indicate that the ANFIS-SCM model has strong potential to indirect estimation of deformation modulus of a rock mass with high degree of accuracy and robustness.

목차

등록된 정보가 없습니다.

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0