메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
고현정 (한양대학교)
저널정보
한국무용교육학회 한국무용교육학회지 한국무용교육학회지 제29권 제4호
발행연도
2018.1
수록면
47 - 60 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Human has a formidable ability that can control his/her own body to perform numerous numbers of skilled behaviours which appropriate to his/her own culture. This can be explained as embodied cognition. Dancers’ numerous movement repertories are highly skilled, and very accurate and complicate that require high control ability. Apart from this control ability, dancers also possess employing space-time, creative thinking for choreography that can offer un unique model to explore how dancer can integrate space-time and skilled movement. Human brain develops a specific process but it has the plasticity which continuously changes with learning and interaction with the environment and people. Dancers, who live with unspeakably fast or complex skilled movements production and re-production, clearly have the plasticity. Dancers who are composed of bodily knowledge, have a huge potential to neuroscientists to explore how the complicate movements can be learned, memorised, re-produced through dancers’ control ability and brain plasticity. Therefore, this study aims to provide the basis for interdisciplinary research of dance and neuroscience to vitalise dance research in terms of embodiment, bodily knowledge and brain. Firstly, to provide the basis of interdisciplinary research for dance, it explores the impotance of the integrating body and brain, and dancers’ embodied cognition. Secondly, it discusses the intimate relationship between seeing dance and doing dance to understand dancers’ brain networks. Thirdly, for the communication of the dancer and the audience, it depicts kinesthetics and cognition of intersubjectivity within a neuroscientific way.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0