메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Seongha Ahn (Pusan National University) Hosun Kang (Pusan National University) Jangmyung Lee (Pusan National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
143 - 146 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We present an Aerial-Satellite imagery matching framework for UAVs visual localization. The usage of Unmanned Aerial Vehicles (UAVs) has been continuously increasing in many applications, such as defense, agriculture, mapping, and observation. Localization plays an essential role in UAVs navigation system. The Global Positioning System (GPS) is mainly applied for localization; however, GPS interference may occur in a GPS-denied environment. One alternative that can be used is to use a pre-existing satellite image. By comparing aerial photographs with geo-tagged satellite images, global coordinates can be estimated in an intuitive way. However, due to various factors (such as weather, light conditions, and seasonal changes), it draws different visual representations between aerial and satellite imagery. To address this problem, we propose a image matching framework that exploits CNN-based Siamese Neural Network with contrastive learning method. The proposed framework firstly takes two input data; aerial image and satellite image of the area where UAV is estimated to be. By image retrieval and matching process, it predicts global coordinates of center of the aerial image. In this paper, we describe the structure of framework, data preparation, and the efficient representation learning strategy for downstream tasks. Additionally, we evaluate the performance of the proposed framework by measuring RMSE.

목차

Abstract
1. INTRODUCTION
2. FRAMEWORK
3. EXPERIMENTS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0