메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Seungwon Do (Electronics and Telecommunications Research Institute (ETRI)) Changeun Lee (Electronics and Telecommunications Research Institute (ETRI))
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
207 - 210 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Multi-agent reinforcement learning is essential for learning optimal policy for collaboration and competition environments. However, as the action space of the agent increases, the number of state-action pairs which have to be explored increases exponentially. As a result, increasing search space causes difficulty to converge the learning. To solve this problem, we propose a supervisory network. To achieve the global goal, the supervisory network creates a sub-goal and assigns the goals to the agents so that the agents can effectively learn the optimal policy with a small action space. In addition, we adapt the curriculum learning method to learn a large-scale environment. As a consequence, the agent can explore the environment in which the complexity increases gradually. Although a baseline network was learned in the same environment to compare with our model, the baseline fails to learn an optimal policy while our model successes to learn in the large-scale environment.

목차

Abstract
1. INTRODUCTION
2. RELATED WORK
3. METHOD
4. TREASURE HUNTER EXPERIMENT
5. DISCUSSION AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0