메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Tae Hoon Oh (Seoul National University) Lorena F.S. Souza (Siemens Process Systems Engineering Limited) Jong Min Lee (Seoul National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
388 - 393 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The recent advance in measurement equipment, data transmission, and computational power enables digitalizing the process operation and constructing the digital twin. This implies that various existing model-based applications such as process monitoring, forecasting, decision support, and control can be applied to chemical processes with the most updated model in real-time. However, the systematic method of integrating the process data, model-based applications, database, and the user interface has not been well addressed. Therefore, this paper aims to fill this gap by proposing the workflow on applying the integrating framework called gPROMS Digital Application Platform that can receive and validate the process data, execute the various model-based applications, and visualizing the data and process results in a customized web-based user interface. For the case study, the integrating framework is constructed to optimize the SMR process in real-time. The gPROMS Process was used to construct the process model and the optimization problem was solved to find the optimal operating conditions that maximize the thermal efficiency of the reactor. The database stores the model inputs and outputs, and sends the signals to execute the model-based applications. Lastly, the web-based user interface was constructed to offer an environment to monitor the process status and execute the process optimization.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGY
3. CASE STUDY: STEAM METHANE REFORMING PROCESS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0