메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Doo-Jun Kim (Korea University) HyunJun Jo (Korea University) Jae-Bok Song (Korea University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
496 - 499 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
When performing reinforcement learning using a robot arm in the real environment, it is important to perform reinforcement learning safely and quickly. This is because unexpected behaviors during reinforcement learning and long-term learning can damage the robot arm or surrounding objects. In this study, trajectory-based imitation learning that suppresses unexpected situations and quickly learns the policies suitable for the robots is proposed by limiting the workspace to be explored through one human demonstration. Trajectory-based imitation learning consists of two stages. First, a reference trajectory is generated considering the position of a target object and the expert trajectory from the human demonstration. Second, the target task is trained by performing reinforcement learning based on the generated reference trajectory. Experiments were conducted in simulation and real environments to verify the proposed imitation learning algorithm. In the simulation, a laptop folding task was performed with a success rate of 97% to verify the performance of the algorithm. In addition, it was shown that safe and fast learning is possible with only one demonstration video on the drawer arrangement in a real environment.

목차

Abstract
1. INTRODUCTION
2. REFERENCE TRAJECTORY GENERATION
3. IMITATION LEARNING
4. EXPERIMENTS AND RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0