메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Naoki Asatani (Kyushu Institute of Technology) Tohru Kamiya (Kyushu Institute of Technology) Shingo Mabu (Yamaguchi University) Shoji Kido (Osaka University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,804 - 1,808 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The death toll from respiratory illness reached nearly 8 million in 2019. Auscultation is used to diagnose for respiratory illness. Highly accurate diagnosis is required to reduce the number of deaths. However, unlike diagnostic imaging, auscultation of respiratory sounds could not visualize the diagnostic results. In addition, since there is a problem that the experience of a doctor affects the diagnosis results, it is required to develop a diagnostic system for quantitative analysis. In recent years, the development of a diagnostic system using the ICBHI 2017 Challenge Respiratory Sound Database has been carried out in the field of respiratory sound analysis. However, the proposed system still has accuracy problems. Therefore, in this study, we improve the proposed method by classifying the improved CRNN (Convolutional Recurrent Neural Network) by inputting multiple respiratory sound images. As a result, Sensitivity: 0.64, Specificity: 0.83, Average Score: 0.74, Harmonic Score: 0.72 were obtained, and excellent results were achieved compared with other methods.

목차

Abstract
1. INTRODUCTION
2. METHOD
3. EXPERIMENTAL RESULTS AND DISCUSSIONS
4. CONCULUSION
REFERENCE

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0