메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Bo-Li (Paichai University) Kyung-Duk Cho (Paichai University)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제3호
발행연도
2022.3
수록면
333 - 340 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
코로나19는 모두로 하여금 초조하고 불안하게 만들고, 사람들간에는 거리두기가 필요하다. 코로나19로 인해 심리적으로 초조하고 불안 해 지고 거리두기가 필요해졌다. 대학교에서는 학기 초에 정신건강에 대한 단체 평가와 검사가 이루어진다. 본 연구에서는 다층감지기 신경망 모델을 채택하고 훈련시켜 딥러닝을 진행했다. 훈련이 끝난 후, 실제 사진과 동영상을 입력하고, 안면탐지를 진행하고, 표본에 있는 사람의 얼굴 위치를 알아낸 후, 그 감정을 다시 분류하고, 그 표본의 예측한 감정 결과를 그림으로 보여주었다. 결과는 다음과 같다. 테스트 시험에서는 93.2%의 정확도를 얻었고, 실제 사용에서는 95.57%의 정확도를 얻었다. 그중 분노의 식별율은 95%, 혐오의 식별율은 97%, 행복의 식별율은 96%, 공포의 식별율은 96%, 슬픔의 식별율은 97%, 놀라움의 식별율은 95%, 중립의 식별율은 93%이었다. 본 연구의 고효율적 정서 식별 기술은 학생들의 부정적 정서를 포착하는 객관적 데이터를 제공 할 수 있다. 딥러닝의 감정식별 시스템은 심리건강을 향상하기 위한 데이터들을 제공할 수 있다.

목차

요약
ABSTRACT
Ⅰ. The Introduction
Ⅱ. Research concepts
Ⅲ. Application of deep learning in life scenarios
Ⅳ. The research process
Ⅴ. Conclusion and prospect
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001159160