메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정병길 (고려대학교) 권준형 (고려대학교) 민동준 (고려대학교) 이상근 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제32권 제4호
발행연도
2022.8
수록면
647 - 660 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 정상 데이터와 일부 비정상 데이터를 보유한 환경에서 딥러닝 기반 준 지도 학습 이상 탐지 기법이 매우 효과적으로 동작함이 알려져 있다. 하지만 사이버 보안 분야와 같이 실제 시스템에 대한 알려지지 않은 공격 등 비정상 데이터 확보가 어려운 환경에서는 비정상 데이터 부족이 발생할 가능성이 있다. 본 논문은 비정상 데이터가 정상 데이터보다 극히 작은 환경에서 준 지도 이상 탐지 기법에 적용 가능한 섭동을 활용한 초구 기반 비정상 데이터 증강 기법인 ADA-PH(Abnormal Data Augmentation Method using Perturbation based on Hypersphere)를 제안한다. ADA-PH는 정상 데이터를 잘 표현할 수 있는 초구의 중심으로부터 상대적으로 먼 거리에 위치한 샘플에 대해 적대적 섭동을 추가함으로써 비정상 데이터를 생성한다. 제안하는 기법은 비정상 데이터가 극소수로 존재하는 네트워크 침입 탐지 데이터셋에 대하여 데이터 증강을 수행하지 않았을 경우보다 평균적으로 23.63% 향상된 AUC가 도출되었고, 다른 증강 기법들과 비교했을 때 가장 높은 AUC가 또한 도출되었다. 또한, 실제 비정상 데이터에 유사한지에 대한 정량적 및 정성적 분석을 수행하였다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 제안 기법
IV. 제안 기법
V. 결론
References

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0