메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김민재 (포항공과대학교) 권도훈 (포항공과대학교) 이성훈 (현대자동차) 임병국 (현대자동차) 유희천 (포항공과대학교)
저널정보
대한인간공학회 대한인간공학회지 대한인간공학회지 제41권 제4호
발행연도
2022.8
수록면
277 - 284 (8page)
DOI
10.5143/JESK.2022.41.4.277

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Objective: The present study is intended to identify the material properties of PU foam through reviews of journal papers and technical documents and develop regression models to estimate seat comfort based on the material properties of PU foam.
Background: Automobile seat comfort is affected by the shape and size of the seat and its location in the driving workstation as well as the material properties of polyurethane foam (PU foam) and seat cover.
Method: A total of 16 material properties of PU foam were identified in the present study, the PU foam property data were extracted using the stress-strain curve data of 28 seats, and outliers were identified. Then, the regression models of seat comfort were constructed by applying the stepwise regression technique to the PU form and seat comfort data.
Results: The adjusted coefficients of determination (adj. R2) of the seat comfort regression models were found 7.7% to 89.4%.
Conclusion: An Excel-based seat comfort estimation system consisting of the input of PU foam factors, the estimation of seat comfort, the addition of new stress-strain data, and the update of seat comfort regression models was developed to efficiently apply the developed seat comfort estimation models to the design of PU foam.
Application: The seat comfort estimation models developed in the present study would be of use to determine the material properties of PU foam for better seat comfort.

목차

1. Introduction
2. Identification of Material Properties of PU Foam
3. Data Collection and Processing
4. Development of Seat Comfort Estimation Equation and System
5. Discussion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0