메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김진성 (한양대학교) 노가은 (한양대학교) 남현길 (한양대학교) 박종일 (한양대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2022 하계학술대회
발행연도
2022.6
수록면
199 - 202 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 인식이 어려운 조명 환경에도 강인한 seven-segment 문자 인식을 위해서, 영상 내에 다양한 조명 연출이 가능하도록 합성 데이터 셋을 생성하고 학습할 수 있는 OCR 방법을 제안한다. 기존 연구에서는 deblurring 과 같이 영상 이미지의 해상도를 높여 문자 인식의 정확도를 향상시키는 것에 초점을 두었으나, 여러 조명 환경에 대비할 수 있는 OCR 관련 연구들은 부족하다. 이를 해결하기 위해 본 논문에서는 문자가 포함된 자연스러운 배경 영상에, seven-segment 문자를 합성시킨 후 relighting 을 적용함으로써 실제 환경과 유사한 장면을 연출해 새로운 합성 데이터 셋을 생성한다. 그리고 생성된 데이터 셋을 딥러닝 기반 학습시켜 다양한 조명에도 강인한 문자 인식기를 만들고자 한다. 합성 데이터 셋의 사용여부와 일반적인 데이터 augmentation 기법의 사용 여부를 비교하여, 본 논문에서 제안한 방법의 효과를 확인할 수 있었다. 이를 통해서 seven-segment 문자 인식 뿐만 아니라, 다양한 문자에 대해서도 적용될 수 있는 초석이 될 것으로 기대된다.

목차

요약
1. 서론
2. 합성 데이터 셋 생성
3. Scene Text Recognition(STR)
4. 비교 실험
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-567-001632402