메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김용환 (한국전자기술연구원) 김유라 (한국전자기술연구원)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2022 하계학술대회
발행연도
2022.6
수록면
210 - 213 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 들어 세계적으로 크게 관심을 받는 메타버스 및 몰입형(가상현실, 확장현실, 및 라이트필드) 콘텐츠 서비스의 응용 범위를 확대하기 위해서는 3D 객체의 실시간 전송을 위한 압축 기술이 필요하다. ISO/IEC 23090 MPEG-I Part 5 로 2021 년 표준화 완료된 V-PCC (Video-based Point Cloud Compression)는 이러한 산업계의 관심 및 필요에 의해서 국제 표준화된 동적 3D 포인트 클라우드 객체 부호화 기술이다. V-PCC 기술의 압축 성능은 기존 산업계 기술에 비해 매우 우수하나, 부호화기의 연산 복잡도가 매우 높다는 단점을 가지고 있다. 본 논문에서는 V-PCC 부호화기에서 가장 높은 연산 복잡도를 갖는 법선 추정 알고리즘의 결합 고속화 기법을 제안한다. 법선추정은 2 개의 알고리즘으로 구성되어 있다. 첫번째는 “방향을 무시하는 법선 추정 알고리즘(normal estimation)”이고, 두번째는 첫번째 알고리즘에서 추정된 법선들을 대상으로 하는 “법선 방향 추정알고리즘(normal orientation)”이다. 본 논문에서 제안하는 고속화 기법은 2 개 알고리즘을 결합하여 첫번째 법선추정 알고리즘에서 획득한 부가 정보를 두번째 법선 방향 추정 알고리즘에서 활용함으로써 연산량을 대폭 줄이고, 또한 법선 방향 추정 알고리즘 내의 우선순위 큐 자료구조를 변경하여 추가적인 고속화를 달성한다. 7 개 테스트 영상에 대한 실험 결과, 압축 효율 저하 없이 법선 방향 추정 알고리즘의 속도를 평균 89.2% 향상시킬 수 있다.

목차

요약
1. 서론
2. 3D 포인트 클라우드 법선 추정 복잡도 분석
3. 제안하는 고속 결합 법선 추정 기법
4. 실험 결과
5. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-567-001632366