메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jonghyun Lee (Seoul National University) Jeong-Ah Shin (Dongguk University) Myung-Kwan Park (Dongguk University)
저널정보
한국영어학회 영어학 영어학 Volume.22
발행연도
2022.1
수록면
1,033 - 1,050 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study compared the syntactic capabilities of several neural language models(LMs) including Transformers (BERT / ALBERT) and LSTM and investigated whether they exhibit human-like syntactic representations through a targeted evaluation approach, a method to evaluate the syntactic processing ability of LMs using sentences designed for psycholinguistic experiments. By employing gardenpath structures with several linguistic manipulations, whether LMs detect temporary ungrammaticality and use a linguistic cue such as plausibility, transitivity, and morphology is assessed. The results showed that both Transformers and LSTM exploited several linguistic cues for incremental syntactic processing, comparable to human syntactic processing. They differed, however, in terms of whether and how they use each linguistic cue. Overall, Transformers had a more human-like syntactic representation than LSTM, given their higher sensitivity to plausibility and ability to retain information from previous words. Meanwhile, the number of parameters does not seem to undermine the performance of LMs, contrary to what was predicted in previous studies. Through these findings, this research sought to contribute to a greater understanding of the syntactic processing of neural language models as well as human language processing.

목차

ABSTRACT
1. Introduction
2. Method
3. Results
4. General Discussion and Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0