메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Lin Hao (Pukyong National University) Il Do Ha (Pukyong National University)
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제33권 제5호
발행연도
2022.9
수록면
919 - 926 (8page)
DOI
10.7465/jkdi.2022.33.5.919

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The accelerated failure time (AFT) model with random effects has been widely used for clustered or correlated time-to-event data as an alternative to frailty model which is the Cox’s proportional hazards model with random effects. The AFT random effect model usually assumes a normal distribution for random effect distribution. It is well known that the estimated regression parameters in the AFT model are robust against various violations of the assumed model. However, the impact of prediction (or estimation) of random effect, when the assumed normal random effect is misspecified, has been relatively less studied. In this paper, we investigate the impact of misspecification of normal random effect distribution on the prediction of random effect under the AFT random effect model. Here, the random effect is estimated using the hierarchical likelihood (h-likelihood) which is useful for the inference of random effects. The proposed method is demonstrated using simulation studies and a real data set.

목차

Abstract
1. Introduction
2. AFT random effect model and estimation procedure
3. Simulation study
4. An illustrative example
5. Discussion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-041-000106240