메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
박재훈 (성균관대학교) 김광수 (성균관대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2022년 한국컴퓨터정보학회 하계학술대회 논문집 제30권 2호
발행연도
2022.7
수록면
23 - 26 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥 러닝 모델은 블랙 박스 (Black Box) 모델로 예측에 대한 근거를 제시하지 못해 신뢰성이 떨어지는 단점이 존재한다. 이를 해결하기 위해 딥 러닝 모델에 설명력을 부여하는 설명 가능한 인공지능 (XAI) 분야 연구가 활발하게 이루어지고 있다. 본 논문에서는 모델 예측을 프로토타입을 통해 설명하는 딥 러닝 모델을 제시한다. 즉, “주어진 이미지는 티셔츠인데, 그 이유는 티셔츠를 대표하는 모양의 프로토타입과 닮았기 때문이다.”의 형태로 딥 러닝 모델을 설명한다. 해당 모델은 Encoder, Prototype Layer, Classifier로 구성되어 있다. Encoder는 Feature를 추출하는 데 활용하고 Classifier를 통해 분류 작업을 수행한다. 모델이 제시하는 분류 결과를 설명하기 위해 Prototype Layer에서 가장 유사한 프로토타입을 찾아 설명을 제시한다. 실험결과 프로토타입 생성 기반 설명 모델은 기존 이미지 분류 모델과 유사한 예측 정확도를 보였고, 예측에 대한 설명력까지 확보하였다.

목차

요약
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0