메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김윤수 (Changwon National University) 배서한 (Changwon National University) 석종원 (Changwon National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제26권 제3호
발행연도
2022.9
수록면
156 - 161 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
제조 현장에 사용되는 전기적 구동 모터는 베어링의 결함 발생 시 시스템 전체의 작동 정지를 초래하게 된다. 제조 환경 작동의 정지는 시간과 금전적으로 막대한 손해를 일으키며 이러한 베어링의 결함 원인으로는 회전 요소들의 지속적인 접촉으로 인한 마모, 과도한 하중 적용, 구동 환경 등 다양한 요소가 될 수 있다. 따라서 본 논문에서는 국내 제조 환경과 유사한 모터 구동 환경을 제작하여, 다양한 원인의 베어링 환경을 모의한다. 또한 구축된 환경을 바탕으로 정상 및 결함 상태에 따라 달라지는 진동 특성의 변화를 센서를 통해 수집하여 베어링 결함 예지 정비를 위한 데이터셋을 제안한다. 진동 특성 수집에 사용된 센서는 Microphone G.R.A.S. 40PH-10을 사용하여 수집하였으며, 다양한 기계학습 모델을 사용하여 제안하는 데이터셋에 훈련된 견본 베어링 예지 정비 시스템을 제작해본 결과, 심층 신경망 모델 기준 시간 영역 92.3%, 주파수 영역 98.3%의 높은 정확도 성능을 보여준다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-056-000099450