메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신소희 (성균관대학교) 오하영 (성균관대학교) 김장현 (성균관대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제10호
발행연도
2022.10
수록면
1,423 - 1,431 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
블랙숄즈모형에서 옵션가격을 결정하는 변수 중 기초자산의 변동성은 현재 시점에서는 알 수 없고, 미래시점에 실현된 변동성을 사후에야 알 수 있다. 하지만 옵션이 거래되는 시장에서 관찰되는 가격이 있기 때문에 가격에 내재된 변동성을 역으로 산출한 내재변동성은 현재 시점에 구할 수 있다. 내재변동성을 구하기 위해서는 옵션가격과, 블랙숄즈 모형의 변동성을 제외한 옵션가격결정변수인 기초자산가격, 무위험이자율, 배당률, 행사가격, 잔존기간이 필요하다. 블랙숄즈모형의 변동성은 고정된 상수이나, 내재변동성 산출시 행사가격에 따라 변동성이 다르게 산출되는 변동성스마일현상을 보이기도 한다. 따라서 내재변동성 산출시 옵션 단일 종목이 아닌 시장전반의 변동성을 감안하는 것이 필요하다고 판단하여 본 연구에서는 V-KOSPI지수도 설명변수로 추가하였다. 머신러닝기법 중 지도학습방법을 사용하였으며, Linear Regression 계열, Tree 계열, SVR과 KNN 알고리즘 및 딥뉴럴네트워크로 학습 및 예측하였다. Training성능은 Decision Tree모형이 99.9%로 가장 높았고 Test성능은 Random Forest 알고리즘이 96.9%로 가장 높았다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 선행 연구
Ⅲ. 배경 지식
Ⅳ. 연구 방법
Ⅴ. 제안하는 기법
Ⅵ. 결론
REFERENCES

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0