메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김지철 (Korea Institute of Machinery & Material) 김영재 (Korea Institute of Machinery & Material) 김민극 (Korea Institute of Machinery & Material) 이한민 (Korea Institute of Machinery & Material)
저널정보
유공압건설기계학회 드라이브·컨트롤 드라이브·컨트롤 Vol.19 No.4
발행연도
2022.12
수록면
62 - 69 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Construction machinery is exposed to accidents such as collisions, narrowness, and overturns during operation. In particular, mobile crane is operated only with the driver"s vision and limited information of the assistant worker. Thus, there is a high risk of an accident. Recently, some collision avoidance device using sensors such as cameras and LiDAR have been applied. However, they are still insufficient to prevent collisions in the omnidirectional 3D space. In this study, a rotating LiDAR device was developed and applied to a 250-ton crane to obtain a full-space point cloud. An algorithm that could provide distance information and safety status to the driver was developed. Also, deep-learning segmentation algorithm was used to classify human-worker. The developed device could recognize obstacles within 100m of a 360-degree range. In the experiment, a safety distance was calculated with an error of 10.3cm at 30m to give the operator an accurate distance and collision alarm.

목차

Abstract
1. 서론
2. 관련 연구
3. 크레인 충돌방지용 환경탐지 센서
4. 실험 및 결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0