메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이인효 (숭실대학교) 김준철 (숭실대학교) 김태현 (숭실대학교) 민경민 (숭실대학교)
저널정보
대한기계학회 대한기계학회 춘추학술대회 대한기계학회 2022년 학술대회
발행연도
2022.11
수록면
1,487 - 1,491 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Two-dimensional (2D) materials are attractive materials. Many studies are being conducted because of their unique characteristics. However, there is lack of information about properties of 2D materials. Therefore, this study attempted to solve this problem by developing a machine learning (ML) model that predicts mechanical properties of 2D materials. In addition, a 2D materials generation framework was developed using a classification model and a deep learning-based generative model. ML model to predict mechanical properties is trained from existing 2D database and reduces the uncertainty of prediction through data optimization techniques. Potential 2D materials are discovered through screening processes such as measuring structure and atomic similarities. We believe that the developing of ML model and framework for finding new 2D materials could open a new chapter in material science

목차

Abstract
1. 서론
2. 이론 및 실험
3. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0