메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이나경 (명지대학교) 신용범 (명지대학교) 신동일 (명지대학교)
저널정보
한국가스학회 한국가스학회지 한국가스학회지 제25권 제2호
발행연도
2021.4
수록면
64 - 71 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
수소연료전지자동차를 비롯한 자동차 분야에서 성형 가공성과 기계적 특성이 우수한 고분자 복합수지에 대한 연구는 특정 기계적 특성을 갖춘 재료의 설계지원을 위한 Computer-Aided Engineering (CAE)으로 확대되고 있다. CAE 자동화는 소재의 기계적 특성 및 거동 예측이 선행되어야 하는데, 고분자 복합수지의 기계적 물성 예측은 단일물질과 달리, 바탕재와 보강재 간의 관계로만 설명하기에는 물성 거동이 복잡하기에, 수식으로 설명하기 어렵다. 본 연구에서는 큰 소성 구간과 조성에 예민하여 예측이 어려웠던 고분자 복합수지의 조성에 따른 응력-변형률 선도를 데이터의 기계학습을 기반으로 예측하였다. 개발모델은 바탕재, 보강재 종류 및 조성간의 복잡한 상관관계를 찾아, 학습한 시험 데이터가 없는 조건에서도 전체 응력-변형률 곡선을 의미있게 예측한다. 학습하지 않은 조성과 구성에 대해서도 고분자 복합수지의 기계적 특성을 예측하는 개발 모델을 기반으로 향후 소재 설계 AI 시스템을 완성할 수 있을 것으로 기대한다.

목차

요약
Abstract
I. 서론
II. 기계적 물성 거동
III. 적용 기계학습 모델
IV. 예측 모델링
V. 결과
VI. 결론
REFERENCES

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-575-001694128